WikiSort.ru - Программирование

ПОИСК ПО САЙТУ | о проекте
OpenCL
Тип API
Разработчик Apple Inc., Khronos Group
Написана на Си и C++
Операционная система Кроссплатформенное программное обеспечение
Первый выпуск 28 августа 2009
Аппаратная платформа x86-64, IA-32 и ARM
Последняя версия 2.2-3 (12 мая 2017)
Тестовая версия 2.2 (3 март 2016)
Лицензия Свободная
Сайт khronos.org/opencl/

OpenCL (англ. Open Computing Language — открытый язык вычислений) — фреймворк для написания компьютерных программ, связанных с параллельными вычислениями на различных графических и центральных процессорах, а также FPGA. В OpenCL входят язык программирования, который основан на стандарте языка программирования Си C99, и интерфейс программирования приложений. OpenCL обеспечивает параллелизм на уровне инструкций и на уровне данных и является осуществлением техники GPGPU. OpenCL является полностью открытым стандартом, его использование не облагается лицензионными отчислениями.

Цель OpenCL состоит в том, чтобы дополнить открытые отраслевые стандарты для трёхмерной компьютерной графики и звука OpenGL и OpenAL возможностями GPU для высокопроизводительных вычислений. OpenCL разрабатывается и поддерживается некоммерческим консорциумом Khronos Group, в который входят много крупных компаний, включая AMD, Apple, ARM, Intel, Nvidia, Sony Computer Entertainment и другие.

История

OpenCL первоначально был разработан в компании Apple Inc. Apple внесла предложения по разработке спецификации в комитет Khronos. Вскоре компания AMD решила поддержать разработку OpenCL (и DirectX 11), который должен заменить фреймворк Close to Metal.[1][2]

16 июня 2008 года была образована рабочая группа Khronos Compute для разработки спецификаций OpenCL. В неё вошли Apple, nVidia, AMD, IBM, Intel, ARM, Motorola и другие компании, в том числе специализирующиеся на создании компьютерных игр. Работа велась в течение пяти месяцев, по истечении которых 9 декабря 2008 года организация Khronos Group представила первую версию стандарта.

OpenCL 1.0 был впервые показан общественности 9 июня 2008, а выпущен вместе с Mac OS X 10.6, 28 августа 2009 года.[3]

5 апреля 2009 года компания AMD анонсировала доступность для загрузки бета-версии набора разработчика ATI Stream SDK v2.0, в который входит язык мультипроцессорного программирования OpenCL.

20 апреля 2009 года nVidia представила бета-драйвер и набор для разработки программного обеспечения (SDK) с поддержкой открытого GPGPU-стандарта OpenCL. Этот бета-драйвер предназначен для разработчиков, участвующих в программе «OpenCL Early Access», которые уже с 20 апреля могут принять участие в испытании бета-версии. Для участников программы «GPU Computing Registered Developers» бета-версия драйвера OpenCL будет доступна позже.[4][5][6]

26 ноября 2009 года компания nVidia выпустила драйвер с поддержкой OpenCL 1.0 (rev 48).

Для получения наглядного представления, как технология OpenCL использует возможности 24-ядерной системы для отрисовки видеоэффектов, рекомендуется посмотреть следующий демо-ролик:.

OpenCL 1.1 был представлен организацией Khronos Group 14 июня 2010 года. В новой версии значительно расширены функциональные возможности для параллельного программирования, гибкость и производительность, а также добавлены новые возможности.

  • Новые типы данных, включая 3-компонентные векторы и дополнительные форматы изображений.
  • Обработка команд из нескольких потоков хоста и обработки буфера между несколькими устройствами.
  • Операции по регионам буфера включая чтение, запись и копирование 1D, 2D или 3D прямоугольных областей.
  • Расширенное использование события для управления и контроля выполнения команд.
  • Улучшенное взаимодействие с OpenGL за счет эффективного обмена изображениями.

OpenCL 1.2 был представлен 15 ноября 2011 года. В новой версии отмечено множество небольших улучшений, связанных с увеличением гибкости языка и оптимизацией производительности. В OpenCL 1.2 был добавлен ряд значительных новшеств.

  • Партицирование устройств — возможность разбиения на уровне OpenCL-приложения устройства на несколько подустройств для непосредственной привязки работ к конкретным вычислительным блокам, резервирования ресурсов для более приоритетных задач или более эффективного совместного использования аппаратных ресурсов, таких как кэш.
  • Раздельная компиляция и связывание объектов — появилась возможность создания динамических библиотек, позволяющих использовать в сторонних программах, ранее реализованные подпрограммы с OpenCL-вычислениями.
  • Расширенная поддержка изображений, включая возможность работы с одномерными изображениями и массивами одномерных или двухмерных изображений. Кроме того, в расширении для организации совместного доступа (sharing) добавлена возможность создания OpenCL-изображения на основе отдельных текстур OpenGL или массивов текстур.
  • Встроенные OpenCL-ядра теперь позволяют использовать возможности специализированного или непрограммируемого аппаратного обеспечения и связанных с ним прошивок. Например, появилась возможность использования возможностей и более тесной интеграции с фреймворком OpenCL таких устройств, как DSP-процессоры или видео кодировщики/декодировщики.
  • Возможность бесшовного совместного использования поверхностей (Media Surface Sharing) между OpenCL и API DirectX 9/11.

OpenCL 2.0 был представлен 22 июля 2013 года[7] и стандартизирован 18 ноября того же года[8].

  • Общая виртуальная память - Позволяет ядрам узла и устройств совместно использовать структуры данных, основанные на комплексных адресных ссылках, устраняя явные пересылки между узлом и устройствами, повышая при этом гибкость программирования.
  • Вложенный параллелизм - Обновление улучшило возможности программирования и увеличило производительность приложений.
  • Универсальное адресное пространство - Позволяет записать функции без наименования адресного пространства, что повышает гибкость и экономит время за счет устранения необходимости записи нескольких функций.
  • Атомарные операции C11 со стороны устройства - Подмножество атомарных и синхронизирующих операций C11 обеспечивает параллельное выполнение потоков для безопасной работы над общими наборами данных.
  • Каналы - Объекты памяти, организованные по принципу FIFO, что упрощает структуры данных общей очереди.

OpenCL 2.1 был представлен 3 марта 2015 года и стандартизирован 16 ноября того же года. В нем было переписано ядро с языка C на C++14.

События

  • 3 марта 2011 — Khronos Group объявляет о создании рабочей группы WebCL для разработки JavaScript-интерфейса к стандарту OpenCL. Это создает потенциал для того, чтобы использовать GPU и многоядерные процессоры для параллельной обработки вычислений в веб-браузере.[9]
  • 4 мая 2011 — подразделение Nokia Research представило открытое расширение WebCL для браузера Firefox.[9]
  • 1 июля 2011 — Samsung Electronics представила открытый прототип WebCL для движка WebKit.[9]
  • 8 августа 2011 — AMD выпустила OpenCL-драйвер AMD Accelerated Parallel Processing (APP) Software Development Kit (SDK) v2.5, заменив ATI Stream SDK.
  • 15 ноября 2011 — комитет Khronos представил обновлённую спецификацию OpenCL 1.2. В новой версии отмечено множество небольших улучшений, связанных с увеличением гибкости языка и оптимизацией производительности.
  • 1 декабря 2012 — комитет Khronos представил очередное обновление спецификации OpenCL 1.2. В новой версии улучшено взаимодействие с OpenGL, улучшена безопасность в WebGL, добавлена поддержка загрузки OpenCL программ из промежуточного представления SPIR.

Особенности языка

Ключевыми отличиями используемого языка от Си (стандарт ISO 1999 года) являются:

  • отсутствие поддержки указателей на функции, рекурсии, битовых полей, массивов переменной длины (VLA), стандартных заголовочных файлов[10];
  • расширения языка для параллелизма: векторные типы, синхронизация, функции для Work-items/Work-Groups[10];
  • квалификаторы типов памяти: __global, __local, __constant, __private;
  • иной набор встроенных функций.

Примеры

Пример вычисления БПФ: [11]

  // создание вычислительного контекста для GPU (видеокарты)
  context = clCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

  // создание очереди команд
  queue = clCreateCommandQueue(context, NULL, 0, NULL);

  // выделение памяти в виде буферов
  memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float)*2*num_entries, srcA, NULL);
  memobjs[1] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(float)*2*num_entries, NULL, NULL);

  // создание программы из исходных текстов
  program = clCreateProgramWithSource(context, 1, &fft1D_1024_kernel_src, NULL, NULL);

  // компиляция программы
  clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

  // создание объекта kernel из скомпилированной программы
  kernel = clCreateKernel(program, "fft1D_1024", NULL);

  // подготовка аргументов
  clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&memobjs[0]);
  clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&memobjs[1]);
  clSetKernelArg(kernel, 2, sizeof(float)*(local_work_size[0]+1)*16, NULL);
  clSetKernelArg(kernel, 3, sizeof(float)*(local_work_size[0]+1)*16, NULL);

  // задание N-D диапазона с размерностями work-item и отправка в очередь исполнения
  global_work_size[0] = num_entries;
  local_work_size[0] = 64;
  clEnqueueNDRangeKernel(queue, kernel, 1, NULL, global_work_size, local_work_size, 0, NULL, NULL);

Непосредственные вычисления (основаны на отчете «Fitting FFT onto the G80 Architecture»)[12]:

  // Данный код вычисляет FFT длины 1024, путём разбиения на 16, 16 и 4

  __kernel void fft1D_1024 (__global float2 *in, __global float2 *out,
                          __local float *sMemx, __local float *sMemy) {
    int tid = get_local_id(0);
    int blockIdx = get_group_id(0) * 1024 + tid;
    float2 data[16];

    // адрес начала обрабатываемых данных в глобальной памяти
    in = in + blockIdx;  out = out + blockIdx;

    globalLoads(data, in, 64); // coalesced global reads
    fftRadix16Pass(data);      // in-place radix-16 pass
    twiddleFactorMul(data, tid, 1024, 0);

    // локальная перестановка с использованием локальной памяти
    localShuffle(data, sMemx, sMemy, tid, (((tid & 15) * 65) + (tid >> 4)));
    fftRadix16Pass(data);               // in-place radix-16 pass
    twiddleFactorMul(data, tid, 64, 4); // twiddle factor multiplication

    localShuffle(data, sMemx, sMemy, tid, (((tid >> 4) * 64) + (tid & 15)));

    // 4 вызова БПФ порядка 4
    fftRadix4Pass(data);      // radix-4 function number 1
    fftRadix4Pass(data + 4);  // radix-4 function number 2
    fftRadix4Pass(data + 8);  // radix-4 function number 3
    fftRadix4Pass(data + 12); // radix-4 function number 4

    // coalesced global writes
    globalStores(data, out, 64);
  }

Полноценная реализация БПФ на OpenCL доступна на сайте Apple[13].

Применение

OpenCL находит применение, как одна из реализаций концепции GPU общего назначения, в различном ПО.

  • WinZip v16.5 (2012) от Corel — помимо обновлённого движка для улучшения оптимизации его для многоядерных процессоров, добавлена поддержка OpenCL для GPU AMD (однако, не для Intel и Nvidia) — при этом прирост производительности в этом приложении на APU Trinity и Llano составил до 45 %.[14]

См. также

Примечания

  1. AMD Drives Adoption of Industry Standards in GPGPU Software Development. AMD. Архивировано 19 марта 2012 года.
  2. AMD Backs OpenCL, Microsoft DirectX 11. eWeek. Архивировано 19 марта 2012 года.
  3. Apple Previews Mac OS X Snow Leopard to Developers. Apple. Архивировано 19 марта 2012 года.
  4. Andrew Humber. NVIDIA Releases OpenCL Driver To Developers (англ.). NVIDIA (20 апреля 2009 года). — Оригинальная новость на официальном сайте NVIDIA Corporation. Проверено 21 апреля 2009. Архивировано 19 марта 2012 года.
  5. Павел Шубский. NVIDIA открыла GPGPU для разработчиков под OpenCL (недоступная ссылка). Игромания (журнал) (21 апреля 2009 года). Проверено 21 апреля 2009. Архивировано 25 апреля 2009 года.
  6. Сергей и Марина Бондаренко. Драйвер OpenCL для разработчиков от NVIDIA. 3DNews (21 апреля 2009 года). Проверено 21 апреля 2009.
  7. Khronos Releases OpenCL 2.0 (англ.). khronos.org (22 июля 2013 года). Проверено 22 июля 2013.
  8. Khronos Finalizes OpenCL 2.0 Specification for Heterogeneous Computing (англ.), Khronos Group (18 November 2013). Проверено 20 ноября 2013.
  9. 1 2 3 Для WebKit представлена реализация технологии WebCL. opennet.ru (4 июля 2011 года). Проверено 31 октября 2011. Архивировано 19 марта 2012 года.
  10. 1 2 AMD. Introduction to OpenCL Programming 201005, page 89-90
  11. OpenCL. SIGGRAPH2008 (14 августа 2008). Проверено 14 августа 2008. Архивировано 19 марта 2012 года.
  12. Fitting FFT onto G80 Architecture (PDF). Vasily Volkov and Brian Kazian, UC Berkeley CS258 project report (May 2008). Проверено 14 ноября 2008. Архивировано 19 марта 2012 года.
  13. . OpenCL on FFT. Apple (16 Nov 2009). Проверено 7 декабря 2009. (недоступная ссылка) Проверено 21 октября 2017.
  14. AMD Trinity: тесты — OpenCL // THG

Литература

  • Aaftab Munshi; Benedict R. Gaster; Timothy G. Mattson; James Fung; Dan Ginsburg. OpenCL Programming Guide. — Addison-Wesley Professional, 2011. — 648 p. ISBN 978-0-321-74964-2.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии